SeaTunnel Connectors Capability Overview
SeaTunnel provides a comprehensive set of connectors that enable you to read from various data sources and write to different data sinks. This document provides a detailed capability matrix for all available connectors based on the Connector V2 Features.
Quick Facts
- Total Source Connectors: 79
- Total Sink Connectors: 78
- Total Connectors: 157
- Supported Engines: Spark, Flink, SeaTunnel Zeta
- Supported Data Types: Structured, Unstructured, Multimodal
Feature Definitions
Source Connector Features
| Feature | Description |
|---|
| exactly-once | Each piece of data is sent downstream only once, with state snapshots and offsets for reliability |
| column projection | Read only specified columns from data source efficiently |
| batch | Supports bounded data processing (job stops after completing all data) |
| stream | Supports unbounded data processing (continuous streaming) |
| parallelism | Supports parallel execution with multiple tasks reading different splits |
| multimodal | Supports structured and unstructured data (text, video, images, binary files) |
| support user-defined split | Users can configure custom split rules |
| support multiple table read | Read multiple tables in one SeaTunnel job |
Sink Connector Features
| Feature | Description |
|---|
| exactly-once | Each piece of data is written to target only once via key deduplication or XA transactions |
| cdc | Supports change data capture with INSERT/UPDATE/DELETE operations based on primary key |
| support multiple table write | Write to multiple tables in one SeaTunnel job with dynamic table identifiers |
| multimodal | Supports structured and unstructured data (text, video, images, binary files) |
Source Connectors Capability Matrix
Database & CDC Connectors
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| Jdbc | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| MySQL | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| PostgreSQL | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Oracle | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| SQLServer | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| DB2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Kingbase | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Hive | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| HiveJdbc | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Clickhouse | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Doris | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| StarRocks | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Phoenix | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Greenplum | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Redshift | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Vertica | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| MySQL-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PostgreSQL-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Oracle-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SQLServer-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| TiDB-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| MongoDB-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Opengauss-CDC | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
NoSQL Databases
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| MongoDB | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Cassandra | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Hbase | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Redis | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Neo4j | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Data Lake & Warehouse
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| Iceberg | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Hudi | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Paimon | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Databend | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Maxcompute | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| OceanBase | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
Message Queues
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| Kafka | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Pulsar | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Rabbitmq | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RocketMQ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| AmazonSqs | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
File Systems
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| LocalFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HdfsFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| S3File | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| OssFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| OssJindoFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ObsFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CosFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| FtpFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | |
| SftpFile | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | |
Time Series & Search Engines
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| InfluxDB | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| IoTDB | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| IoTDBv2 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TDengine | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Elasticsearch | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Easysearch | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Typesense | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Prometheus | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Vector Databases
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| Milvus | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Qdrant | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
APIs & Cloud Services
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| Http | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Socket | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Github | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Gitlab | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Jira | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Notion | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| GoogleSheets | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| GraphQL | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| AmazonDynamoDB | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Klaviyo | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Lemlist | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MyHours | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| OneSignal | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Persistiq | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Web3j | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Special & Test Connectors
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | column projection | batch | stream | parallelism | multimodal | user-defined split | multiple table |
|---|
| FakeSource | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Cloudberry | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Kudu | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| OpenMldb | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Tablestore | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Sink Connectors Capability Matrix
Database Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Jdbc | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
| MySQL | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| PostgreSQL | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Oracle | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| SQLServer | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| DB2 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Kingbase | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Hive | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Phoenix | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
| Greenplum | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ |
NoSQL & Graph Databases
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| MongoDB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Cassandra | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Hbase | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Redis | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Neo4j | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Aerospike | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| AmazonDynamoDB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| GoogleFirestore | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| HugeGraph | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Data Warehouse & Analytical Databases
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Clickhouse | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Doris | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| StarRocks | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Redshift | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Snowflake | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Databend | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Vertica | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Druid | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Message Queue Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Kafka | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Pulsar | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Rabbitmq | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| RocketMQ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| AmazonSqs | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Activemq | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
File System Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| LocalFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| HdfsFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| S3File | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| OssFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| OssJindoFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ObsFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CosFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| FtpFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SftpFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ClickhouseFile | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Data Lake Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Iceberg | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Hudi | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Paimon | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Search & Time Series Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Elasticsearch | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Easysearch | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Typesense | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| InfluxDB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| IoTDB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| IoTDBv2 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TDengine | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Prometheus | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Vector Database Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Milvus | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Qdrant | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
API & Cloud Service Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Http | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| GraphQL | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Socket | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Datahub | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Maxcompute | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Specialized Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| Console | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| Assert | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| Email | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| Slack | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| DingTalk | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| Feishu | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| Enterprise-WeChat | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| Sentry | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| SensorsData | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
Other Sinks
| Connector | Spark | Flink | SeaTunnel Zeta | exactly-once | cdc | multiple table | multimodal |
|---|
| S3-Redshift | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SelectDB-Cloud | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Tablestore | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Kudu | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Cloudberry | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| Fluss | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| OceanBase | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
Feature Support Summary
Source Connectors Feature Distribution
| Feature | Count | Percentage | Examples |
|---|
| Engine Support | | | |
| All Three Engines | ~65 | 82% | Most database, file, and message queue connectors |
| Spark + Flink Only | ~8 | 10% | Some specialized API connectors |
| Flink + Zeta Only | ~4 | 5% | CDC connectors |
| Processing Mode | | | |
| Batch Support | ~60 | 76% | Most database and file connectors |
| Stream Support | ~70 | 89% | Most connectors, especially CDC and messaging |
| Reliability | | | |
| Exactly-Once | ~45 | 57% | File connectors, JDBC, Kafka |
| Performance | | | |
| Parallelism | ~55 | 70% | Most database and file connectors |
| Column Projection | ~25 | 32% | JDBC, File, some specialized connectors |
| Advanced Features | | | |
| User-Defined Split | ~15 | 19% | CDC, some file connectors |
| Multiple Table Read | ~25 | 32% | JDBC and some database connectors |
| Multimodal Support | ~10 | 13% | File and some specialized connectors |
Sink Connectors Feature Distribution
| Feature | Count | Percentage | Examples |
|---|
| Engine Support | | | |
| All Three Engines | ~70 | 90% | Most database and file connectors |
| Spark + Flink Only | ~6 | 8% | Some specialized connectors |
| Flink + Zeta Only | ~2 | 3% | Specialized cases |
| Reliability | | | |
| Exactly-Once | ~40 | 51% | JDBC, Kafka, File connectors |
| Data Capabilities | | | |
| CDC Support | ~5 | 6% | Limited to specialized database sinks |
| Multiple Table Write | ~15 | 19% | JDBC and some database sinks |
| Multimodal Support | ~10 | 13% | File and specialized connectors |
Connector Selection Guide
Use Case-Based Recommendations
For High Throughput Batch Processing
- Recommended Sources: Jdbc, File connectors (LocalFile, HdfsFile, S3File)
- Recommended Sinks: Jdbc, File connectors, Data Lake formats (Iceberg, Hudi)
- Key Features: Batch support, parallelism, column projection
For Real-time Stream Processing
- Recommended Sources: CDC connectors, Kafka, File connectors (stream mode)
- Recommended Sinks: Kafka, Jdbc (with transactions), Real-time databases
- Key Features: Stream support, exactly-once, low latency
For Exactly-Once Guarantees
- Recommended Sources: File connectors, JDBC, Kafka
- Recommended Sinks: JDBC (XA transactions), Kafka (2PC), File connectors
- Key Features: Exactly-once, transaction support, state management
For Multi-Table Operations
- Recommended Sources: JDBC connectors with multi-table support
- Recommended Sinks: JDBC with dynamic table identifiers
- Key Features: Multiple table read/write, placeholder support
For Cloud Integration
- Recommended Sources: Native cloud connectors, File connectors with cloud storage
- Recommended Sinks: Cloud-specific connectors, File connectors
- Examples: S3File, OSSFile, Snowflake, Redshift, MaxCompute
For Advanced Analytics
- Recommended Sources: Data lake formats, Analytical databases
- Recommended Sinks: Data lake formats (Iceberg, Hudi, Paimon), OLAP databases
- Examples: Clickhouse, Doris, StarRocks, Druid
Engine Compatibility Notes
SeaTunnel Zeta (Recommended)
- Advantages: Best performance, most features, unified API
- Connector Coverage: ~82% source, ~90% sink
- Use Cases: Production deployments, performance-critical workloads
Apache Flink
- Advantages: Stream processing excellence, fault tolerance
- Connector Coverage: ~95% source, ~98% sink
- Use Cases: Complex streaming, stateful processing
Apache Spark
- Advantages: Batch processing, ecosystem integration
- Connector Coverage: ~90% source, ~98% sink
- Use Cases: Large-scale batch processing, ETL workflows
| Data Format | Source Support | Sink Support | Primary Connectors |
|---|
| JSON | ✅ Most | ✅ Most | Universal default format |
| CSV | ✅ File | ✅ File | LocalFile, HdfsFile, S3File |
| Avro | ✅ Kafka/File | ✅ Kafka/File | Kafka, File connectors |
| Parquet | ✅ File/Hive | ✅ File/Hive | LocalFile, HdfsFile, Hive |
| ORC | ✅ File/Hive | ✅ File/Hive | LocalFile, HdfsFile, Hive |
| Text | ✅ File/Kafka | ✅ File/Kafka | File connectors, Kafka |
| XML | ✅ File | ✅ File | File connectors |
| Protobuf | ✅ Kafka | ✅ Kafka | Kafka |
| Canal-JSON | ✅ Kafka | ✅ Kafka | Kafka |
| Debezium-JSON | ✅ Kafka | ✅ Kafka | Kafka |
| Maxwell-JSON | ✅ Kafka | ✅ Kafka | Kafka |
| OGG-JSON | ✅ Kafka | ✅ Kafka | Kafka |
Getting Started
Quick Setup
- Choose Engine: Select SeaTunnel Zeta for best performance
- Select Connectors: Use the matrices above to choose appropriate source/sink
- Install Plugins: Download required connector JAR files
- Configure Job: Create configuration based on feature requirements
- Test & Deploy: Validate configuration and run production jobs
Best Practices
- Feature Matching: Choose connectors that support your required features
- Engine Selection: Use SeaTunnel Zeta when possible for maximum compatibility
- Performance: Enable parallelism and batch processing where supported
- Reliability: Prioritize exactly-once support for critical workloads
- Monitoring: Monitor connector performance and adjust configurations
Contributing
Want to add new connectors or improve existing ones? Check our:
This matrix represents the current state of SeaTunnel connectors based on official documentation. For the most up-to-date information, refer to individual connector documentation pages. Feature availability may vary between versions.