Skip to main content
Version: Next

SeaTunnel Connectors Capability Overview

SeaTunnel provides a comprehensive set of connectors that enable you to read from various data sources and write to different data sinks. This document provides a detailed capability matrix for all available connectors based on the Connector V2 Features.

Quick Facts

  • Total Source Connectors: 79
  • Total Sink Connectors: 78
  • Total Connectors: 157
  • Supported Engines: Spark, Flink, SeaTunnel Zeta
  • Supported Data Types: Structured, Unstructured, Multimodal

Feature Definitions

Source Connector Features

FeatureDescription
exactly-onceEach piece of data is sent downstream only once, with state snapshots and offsets for reliability
column projectionRead only specified columns from data source efficiently
batchSupports bounded data processing (job stops after completing all data)
streamSupports unbounded data processing (continuous streaming)
parallelismSupports parallel execution with multiple tasks reading different splits
multimodalSupports structured and unstructured data (text, video, images, binary files)
support user-defined splitUsers can configure custom split rules
support multiple table readRead multiple tables in one SeaTunnel job

Sink Connector Features

FeatureDescription
exactly-onceEach piece of data is written to target only once via key deduplication or XA transactions
cdcSupports change data capture with INSERT/UPDATE/DELETE operations based on primary key
support multiple table writeWrite to multiple tables in one SeaTunnel job with dynamic table identifiers
multimodalSupports structured and unstructured data (text, video, images, binary files)

Source Connectors Capability Matrix

Database & CDC Connectors

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
Jdbc
MySQL
PostgreSQL
Oracle
SQLServer
DB2
Kingbase
Hive
HiveJdbc
Clickhouse
Doris
StarRocks
Phoenix
Greenplum
Redshift
Vertica
MySQL-CDC
PostgreSQL-CDC
Oracle-CDC
SQLServer-CDC
TiDB-CDC
MongoDB-CDC
Opengauss-CDC

NoSQL Databases

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
MongoDB
Cassandra
Hbase
Redis
Neo4j

Data Lake & Warehouse

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
Iceberg
Hudi
Paimon
Databend
Maxcompute
OceanBase

Message Queues

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
Kafka
Pulsar
Rabbitmq
RocketMQ
AmazonSqs

File Systems

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
LocalFile
HdfsFile
S3File
OssFile
OssJindoFile
ObsFile
CosFile
FtpFile
SftpFile

Time Series & Search Engines

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
InfluxDB
IoTDB
IoTDBv2
TDengine
Elasticsearch
Easysearch
Typesense
Prometheus

Vector Databases

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
Milvus
Qdrant

APIs & Cloud Services

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
Http
Socket
Github
Gitlab
Jira
Notion
GoogleSheets
GraphQL
AmazonDynamoDB
Klaviyo
Lemlist
MyHours
OneSignal
Persistiq
Web3j

Special & Test Connectors

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecolumn projectionbatchstreamparallelismmultimodaluser-defined splitmultiple table
FakeSource
Cloudberry
Kudu
OpenMldb
Tablestore

Sink Connectors Capability Matrix

Database Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Jdbc
MySQL
PostgreSQL
Oracle
SQLServer
DB2
Kingbase
Hive
Phoenix
Greenplum

NoSQL & Graph Databases

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
MongoDB
Cassandra
Hbase
Redis
Neo4j
Aerospike
AmazonDynamoDB
GoogleFirestore
HugeGraph

Data Warehouse & Analytical Databases

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Clickhouse
Doris
StarRocks
Redshift
Snowflake
Databend
Vertica
Druid

Message Queue Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Kafka
Pulsar
Rabbitmq
RocketMQ
AmazonSqs
Activemq

File System Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
LocalFile
HdfsFile
S3File
OssFile
OssJindoFile
ObsFile
CosFile
FtpFile
SftpFile
ClickhouseFile

Data Lake Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Iceberg
Hudi
Paimon

Search & Time Series Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Elasticsearch
Easysearch
Typesense
InfluxDB
IoTDB
IoTDBv2
TDengine
Prometheus

Vector Database Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Milvus
Qdrant

API & Cloud Service Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Http
GraphQL
Socket
Datahub
Maxcompute

Specialized Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
Console
Assert
Email
Slack
DingTalk
Feishu
Enterprise-WeChat
Sentry
SensorsData

Other Sinks

ConnectorSparkFlinkSeaTunnel Zetaexactly-oncecdcmultiple tablemultimodal
S3-Redshift
SelectDB-Cloud
Tablestore
Kudu
Cloudberry
Fluss
OceanBase

Feature Support Summary

Source Connectors Feature Distribution

FeatureCountPercentageExamples
Engine Support
All Three Engines~6582%Most database, file, and message queue connectors
Spark + Flink Only~810%Some specialized API connectors
Flink + Zeta Only~45%CDC connectors
Processing Mode
Batch Support~6076%Most database and file connectors
Stream Support~7089%Most connectors, especially CDC and messaging
Reliability
Exactly-Once~4557%File connectors, JDBC, Kafka
Performance
Parallelism~5570%Most database and file connectors
Column Projection~2532%JDBC, File, some specialized connectors
Advanced Features
User-Defined Split~1519%CDC, some file connectors
Multiple Table Read~2532%JDBC and some database connectors
Multimodal Support~1013%File and some specialized connectors

Sink Connectors Feature Distribution

FeatureCountPercentageExamples
Engine Support
All Three Engines~7090%Most database and file connectors
Spark + Flink Only~68%Some specialized connectors
Flink + Zeta Only~23%Specialized cases
Reliability
Exactly-Once~4051%JDBC, Kafka, File connectors
Data Capabilities
CDC Support~56%Limited to specialized database sinks
Multiple Table Write~1519%JDBC and some database sinks
Multimodal Support~1013%File and specialized connectors

Connector Selection Guide

Use Case-Based Recommendations

For High Throughput Batch Processing

  • Recommended Sources: Jdbc, File connectors (LocalFile, HdfsFile, S3File)
  • Recommended Sinks: Jdbc, File connectors, Data Lake formats (Iceberg, Hudi)
  • Key Features: Batch support, parallelism, column projection

For Real-time Stream Processing

  • Recommended Sources: CDC connectors, Kafka, File connectors (stream mode)
  • Recommended Sinks: Kafka, Jdbc (with transactions), Real-time databases
  • Key Features: Stream support, exactly-once, low latency

For Exactly-Once Guarantees

  • Recommended Sources: File connectors, JDBC, Kafka
  • Recommended Sinks: JDBC (XA transactions), Kafka (2PC), File connectors
  • Key Features: Exactly-once, transaction support, state management

For Multi-Table Operations

  • Recommended Sources: JDBC connectors with multi-table support
  • Recommended Sinks: JDBC with dynamic table identifiers
  • Key Features: Multiple table read/write, placeholder support

For Cloud Integration

  • Recommended Sources: Native cloud connectors, File connectors with cloud storage
  • Recommended Sinks: Cloud-specific connectors, File connectors
  • Examples: S3File, OSSFile, Snowflake, Redshift, MaxCompute

For Advanced Analytics

  • Recommended Sources: Data lake formats, Analytical databases
  • Recommended Sinks: Data lake formats (Iceberg, Hudi, Paimon), OLAP databases
  • Examples: Clickhouse, Doris, StarRocks, Druid

Engine Compatibility Notes

  • Advantages: Best performance, most features, unified API
  • Connector Coverage: ~82% source, ~90% sink
  • Use Cases: Production deployments, performance-critical workloads
  • Advantages: Stream processing excellence, fault tolerance
  • Connector Coverage: ~95% source, ~98% sink
  • Use Cases: Complex streaming, stateful processing

Apache Spark

  • Advantages: Batch processing, ecosystem integration
  • Connector Coverage: ~90% source, ~98% sink
  • Use Cases: Large-scale batch processing, ETL workflows

Data Format Support

Data FormatSource SupportSink SupportPrimary Connectors
JSON✅ Most✅ MostUniversal default format
CSV✅ File✅ FileLocalFile, HdfsFile, S3File
Avro✅ Kafka/File✅ Kafka/FileKafka, File connectors
Parquet✅ File/Hive✅ File/HiveLocalFile, HdfsFile, Hive
ORC✅ File/Hive✅ File/HiveLocalFile, HdfsFile, Hive
Text✅ File/Kafka✅ File/KafkaFile connectors, Kafka
XML✅ File✅ FileFile connectors
Protobuf✅ Kafka✅ KafkaKafka
Canal-JSON✅ Kafka✅ KafkaKafka
Debezium-JSON✅ Kafka✅ KafkaKafka
Maxwell-JSON✅ Kafka✅ KafkaKafka
OGG-JSON✅ Kafka✅ KafkaKafka

Getting Started

Quick Setup

  1. Choose Engine: Select SeaTunnel Zeta for best performance
  2. Select Connectors: Use the matrices above to choose appropriate source/sink
  3. Install Plugins: Download required connector JAR files
  4. Configure Job: Create configuration based on feature requirements
  5. Test & Deploy: Validate configuration and run production jobs

Best Practices

  1. Feature Matching: Choose connectors that support your required features
  2. Engine Selection: Use SeaTunnel Zeta when possible for maximum compatibility
  3. Performance: Enable parallelism and batch processing where supported
  4. Reliability: Prioritize exactly-once support for critical workloads
  5. Monitoring: Monitor connector performance and adjust configurations

Contributing

Want to add new connectors or improve existing ones? Check our:


This matrix represents the current state of SeaTunnel connectors based on official documentation. For the most up-to-date information, refer to individual connector documentation pages. Feature availability may vary between versions.