Apache Iceberg
Apache Iceberg source connector
Description
Source connector for Apache Iceberg. It can support batch and stream mode.
Key features
- batch
- stream
- exactly-once
- column projection
- parallelism
- support user-defined split
- data format
- parquet
- orc
- avro
- iceberg catalog
- hadoop(2.7.1 , 2.7.5 , 3.1.3)
- hive(2.3.9 , 3.1.2)
Options
name | type | required | default value |
---|---|---|---|
catalog_name | string | yes | - |
catalog_type | string | yes | - |
uri | string | no | - |
warehouse | string | yes | - |
namespace | string | yes | - |
table | string | yes | - |
schema | config | no | - |
case_sensitive | boolean | no | false |
start_snapshot_timestamp | long | no | - |
start_snapshot_id | long | no | - |
end_snapshot_id | long | no | - |
use_snapshot_id | long | no | - |
use_snapshot_timestamp | long | no | - |
stream_scan_strategy | enum | no | FROM_LATEST_SNAPSHOT |
common-options | no | - |
catalog_name [string]
User-specified catalog name.
catalog_type [string]
The optional values are:
- hive: The hive metastore catalog.
- hadoop: The hadoop catalog.
uri [string]
The Hive metastore’s thrift URI.
warehouse [string]
The location to store metadata files and data files.
namespace [string]
The iceberg database name in the backend catalog.
table [string]
The iceberg table name in the backend catalog.
case_sensitive [boolean]
If data columns where selected via schema [config], controls whether the match to the schema will be done with case sensitivity.
schema [config]
fields [Config]
Use projection to select data columns and columns order.
e.g.
schema {
fields {
f2 = "boolean"
f1 = "bigint"
f3 = "int"
f4 = "bigint"
}
}
start_snapshot_id [long]
Instructs this scan to look for changes starting from a particular snapshot (exclusive).
start_snapshot_timestamp [long]
Instructs this scan to look for changes starting from the most recent snapshot for the table as of the timestamp. timestamp – the timestamp in millis since the Unix epoch
end_snapshot_id [long]
Instructs this scan to look for changes up to a particular snapshot (inclusive).
use_snapshot_id [long]
Instructs this scan to look for use the given snapshot ID.
use_snapshot_timestamp [long]
Instructs this scan to look for use the most recent snapshot as of the given time in milliseconds. timestamp – the timestamp in millis since the Unix epoch
stream_scan_strategy [enum]
Starting strategy for stream mode execution, Default to use FROM_LATEST_SNAPSHOT
if don’t specify any value.
The optional values are:
- TABLE_SCAN_THEN_INCREMENTAL: Do a regular table scan then switch to the incremental mode.
- FROM_LATEST_SNAPSHOT: Start incremental mode from the latest snapshot inclusive.
- FROM_EARLIEST_SNAPSHOT: Start incremental mode from the earliest snapshot inclusive.
- FROM_SNAPSHOT_ID: Start incremental mode from a snapshot with a specific id inclusive.
- FROM_SNAPSHOT_TIMESTAMP: Start incremental mode from a snapshot with a specific timestamp inclusive.
common options
Source plugin common parameters, please refer to Source Common Options for details.
Example
simple
source {
Iceberg {
catalog_name = "seatunnel"
catalog_type = "hadoop"
warehouse = "hdfs://your_cluster//tmp/seatunnel/iceberg/"
namespace = "your_iceberg_database"
table = "your_iceberg_table"
}
}
Or
source {
Iceberg {
catalog_name = "seatunnel"
catalog_type = "hive"
uri = "thrift://localhost:9083"
warehouse = "hdfs://your_cluster//tmp/seatunnel/iceberg/"
namespace = "your_iceberg_database"
table = "your_iceberg_table"
}
}
column projection
source {
Iceberg {
catalog_name = "seatunnel"
catalog_type = "hadoop"
warehouse = "hdfs://your_cluster/tmp/seatunnel/iceberg/"
namespace = "your_iceberg_database"
table = "your_iceberg_table"
schema {
fields {
f2 = "boolean"
f1 = "bigint"
f3 = "int"
f4 = "bigint"
}
}
}
}
In order to be compatible with different versions of Hadoop and Hive, the scope of hive-exec and flink-shaded-hadoop-2 in the project pom file are provided, so if you use the Flink engine, first you may need to add the following Jar packages to <FLINK_HOME>/lib directory, if you are using the Spark engine and integrated with Hadoop, then you do not need to add the following Jar packages.
flink-shaded-hadoop-x-xxx.jar
hive-exec-xxx.jar
libfb303-xxx.jar
Some versions of the hive-exec package do not have libfb303-xxx.jar, so you also need to manually import the Jar package.
Changelog
2.2.0-beta 2022-09-26
- Add Iceberg Source Connector