StarRocks
StarRocks sink connector
Support These Engines
Spark
Flink
SeaTunnel Zeta
Key Features
Description
Used to send data to StarRocks. Both support streaming and batch mode. The internal implementation of StarRocks sink connector is cached and imported by stream load in batches.
Sink Options
Name | Type | Required | Default | Description |
---|---|---|---|---|
nodeUrls | list | yes | - | StarRocks cluster address, the format is ["fe_ip:fe_http_port", ...] |
base-url | string | yes | - | The JDBC URL like jdbc:mysql://localhost:9030/ or jdbc:mysql://localhost:9030 or jdbc:mysql://localhost:9030/db |
username | string | yes | - | StarRocks user username |
password | string | yes | - | StarRocks user password |
database | string | yes | - | The name of StarRocks database |
table | string | no | - | The name of StarRocks table, If not set, the table name will be the name of the upstream table |
labelPrefix | string | no | - | The prefix of StarRocks stream load label |
batch_max_rows | long | no | 1024 | For batch writing, when the number of buffers reaches the number of batch_max_rows or the byte size of batch_max_bytes or the time reaches checkpoint.interval , the data will be flushed into the StarRocks |
batch_max_bytes | int | no | 5 1024 1024 | For batch writing, when the number of buffers reaches the number of batch_max_rows or the byte size of batch_max_bytes or the time reaches checkpoint.interval , the data will be flushed into the StarRocks |
max_retries | int | no | - | The number of retries to flush failed |
retry_backoff_multiplier_ms | int | no | - | Using as a multiplier for generating the next delay for backoff |
max_retry_backoff_ms | int | no | - | The amount of time to wait before attempting to retry a request to StarRocks |
enable_upsert_delete | boolean | no | false | Whether to enable upsert/delete, only supports PrimaryKey model. |
save_mode_create_template | string | no | see below | see below |
starrocks.config | map | no | - | The parameter of the stream load data_desc |
http_socket_timeout_ms | int | no | 180000 | Set http socket timeout, default is 3 minutes. |
schema_save_mode | Enum | no | CREATE_SCHEMA_WHEN_NOT_EXIST | Before the synchronous task is turned on, different treatment schemes are selected for the existing surface structure of the target side. |
data_save_mode | Enum | no | APPEND_DATA | Before the synchronous task is turned on, different processing schemes are selected for data existing data on the target side. |
custom_sql | String | no | - | When data_save_mode selects CUSTOM_PROCESSING, you should fill in the CUSTOM_SQL parameter. This parameter usually fills in a SQL that can be executed. SQL will be executed before synchronization tasks. |
save_mode_create_template
We use templates to automatically create starrocks tables, which will create corresponding table creation statements based on the type of upstream data and schema type, and the default template can be modified according to the situation. Only work on multi-table mode at now.
Default template:
CREATE TABLE IF NOT EXISTS `${database}`.`${table}` (
${rowtype_primary_key},
${rowtype_fields}
) ENGINE=OLAP
PRIMARY KEY (${rowtype_primary_key})
DISTRIBUTED BY HASH (${rowtype_primary_key})PROPERTIES (
"replication_num" = "1"
)
If a custom field is filled in the template, such as adding an id
field
CREATE TABLE IF NOT EXISTS `${database}`.`${table}`
(
id,
${rowtype_fields}
) ENGINE = OLAP DISTRIBUTED BY HASH (${rowtype_primary_key})
PROPERTIES
(
"replication_num" = "1"
);
The connector will automatically obtain the corresponding type from the upstream to complete the filling,
and remove the id field from rowtype_fields
. This method can be used to customize the modification of field types and attributes.
You can use the following placeholders
- database: Used to get the database in the upstream schema
- table_name: Used to get the table name in the upstream schema
- rowtype_fields: Used to get all the fields in the upstream schema, we will automatically map to the field description of StarRocks
- rowtype_primary_key: Used to get the primary key in the upstream schema (maybe a list)
- rowtype_unique_key: Used to get the unique key in the upstream schema (maybe a list)
table [string]
Use database
and this table-name
auto-generate sql and receive upstream input datas write to database.
This option is mutually exclusive with query
and has a higher priority.
The table parameter can fill in the name of an unwilling table, which will eventually be used as the table name of the creation table, and supports variables (${table_name}
, ${schema_name}
). Replacement rules: ${schema_name}
will replace the SCHEMA name passed to the target side, and ${table_name}
will replace the name of the table passed to the table at the target side.
for example:
- test${schema_name}${table_name}_test
- sink_sinktable
- ss_${table_name}
schema_save_mode[Enum]
Before the synchronous task is turned on, different treatment schemes are selected for the existing surface structure of the target side.
Option introduction:
RECREATE_SCHEMA
:Will create when the table does not exist, delete and rebuild when the table is saved
CREATE_SCHEMA_WHEN_NOT_EXIST
:Will Created when the table does not exist, skipped when the table is saved
ERROR_WHEN_SCHEMA_NOT_EXIST
:Error will be reported when the table does not exist
IGNORE
:Ignore the treatment of the table
data_save_mode[Enum]
Before the synchronous task is turned on, different processing schemes are selected for data existing data on the target side.
Option introduction:
DROP_DATA
: Preserve database structure and delete data
APPEND_DATA
:Preserve database structure, preserve data
CUSTOM_PROCESSING
:User defined processing
ERROR_WHEN_DATA_EXISTS
:When there is data, an error is reported
custom_sql[String]
When data_save_mode selects CUSTOM_PROCESSING, you should fill in the CUSTOM_SQL parameter. This parameter usually fills in a SQL that can be executed. SQL will be executed before synchronization tasks.
Data Type Mapping
StarRocks Data type | SeaTunnel Data type |
---|---|
BOOLEAN | BOOLEAN |
TINYINT | TINYINT |
SMALLINT | SMALLINT |
INT | INT |
BIGINT | BIGINT |
FLOAT | FLOAT |
DOUBLE | DOUBLE |
DECIMAL | DECIMAL |
DATE | STRING |
TIME | STRING |
DATETIME | STRING |
STRING | STRING |
ARRAY | STRING |
MAP | STRING |
BYTES | STRING |
Supported import data formats
The supported formats include CSV and JSON
Task Example
Simple:
The following example describes writing multiple data types to StarRocks, and users need to create corresponding tables downstream
env {
parallelism = 1
job.mode = "BATCH"
checkpoint.interval = 10000
}
source {
FakeSource {
row.num = 10
map.size = 10
array.size = 10
bytes.length = 10
string.length = 10
schema = {
fields {
c_map = "map<string, array<int>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(16, 1)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
username = root
password = ""
database = "test"
table = "e2e_table_sink"
batch_max_rows = 10
starrocks.config = {
format = "JSON"
strip_outer_array = true
}
}
}
Support write cdc changelog event(INSERT/UPDATE/DELETE)
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
username = root
password = ""
database = "test"
table = "e2e_table_sink"
...
// Support upsert/delete event synchronization (enable_upsert_delete=true), only supports PrimaryKey model.
enable_upsert_delete = true
}
}
Use JSON format to import data
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
base-url = "jdbc:mysql://e2e_starRocksdb:9030/"
username = root
password = ""
database = "test"
table = "e2e_table_sink"
batch_max_rows = 10
starrocks.config = {
format = "JSON"
strip_outer_array = true
}
}
}
Use CSV format to import data
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
base-url = "jdbc:mysql://e2e_starRocksdb:9030/"
username = root
password = ""
database = "test"
table = "e2e_table_sink"
batch_max_rows = 10
starrocks.config = {
format = "CSV"
column_separator = "\\x01"
row_delimiter = "\\x02"
}
}
}
Use save_mode function
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
base-url = "jdbc:mysql://e2e_starRocksdb:9030/"
username = root
password = ""
database = "test"
table = "test_${schema_name}_${table_name}"
schema_save_mode = "CREATE_SCHEMA_WHEN_NOT_EXIST"
data_save_mode="APPEND_DATA"
batch_max_rows = 10
starrocks.config = {
format = "CSV"
column_separator = "\\x01"
row_delimiter = "\\x02"
}
}
}
Multiple table
example1
env {
parallelism = 1
job.mode = "STREAMING"
checkpoint.interval = 5000
}
source {
Mysql-CDC {
base-url = "jdbc:mysql://127.0.0.1:3306/seatunnel"
username = "root"
password = "******"
table-names = ["seatunnel.role","seatunnel.user","galileo.Bucket"]
}
}
transform {
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
base-url = "jdbc:mysql://e2e_starRocksdb:9030/"
username = root
password = ""
database = "${database_name}_test"
table = "${table_name}_test"
...
// Support upsert/delete event synchronization (enable_upsert_delete=true), only supports PrimaryKey model.
enable_upsert_delete = true
}
}
example2
env {
parallelism = 1
job.mode = "BATCH"
}
source {
Jdbc {
driver = oracle.jdbc.driver.OracleDriver
url = "jdbc:oracle:thin:@localhost:1521/XE"
user = testUser
password = testPassword
table_list = [
{
table_path = "TESTSCHEMA.TABLE_1"
},
{
table_path = "TESTSCHEMA.TABLE_2"
}
]
}
}
transform {
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
base-url = "jdbc:mysql://e2e_starRocksdb:9030/"
username = root
password = ""
database = "${schema_name}_test"
table = "${table_name}_test"
...
// Support upsert/delete event synchronization (enable_upsert_delete=true), only supports PrimaryKey model.
enable_upsert_delete = true
}
}