跳到主要内容
版本:Next

Hive

Hive source connector

Description

Read data from Hive.

提示

In order to use this connector, You must ensure your spark/flink cluster already integrated hive. The tested hive version is 2.3.9.

If you use SeaTunnel Engine, You need put seatunnel-hadoop3-3.1.4-uber.jar and hive-exec-3.1.3.jar and libfb303-0.9.3.jar in $SEATUNNEL_HOME/lib/ dir.

Key features

Read all the data in a split in a pollNext call. What splits are read will be saved in snapshot.

Options

nametyperequireddefault value
table_namestringyes-
metastore_uristringyes-
krb5_pathstringno/etc/krb5.conf
kerberos_principalstringno-
kerberos_keytab_pathstringno-
hdfs_site_pathstringno-
hive_site_pathstringno-
hive.hadoop.confMapno-
hive.hadoop.conf-pathstringno-
read_partitionslistno-
read_columnslistno-
compress_codecstringnonone
common-optionsno-

table_name [string]

Target Hive table name eg: db1.table1

metastore_uri [string]

Hive metastore uri

hdfs_site_path [string]

The path of hdfs-site.xml, used to load ha configuration of namenodes

hive.hadoop.conf [map]

Properties in hadoop conf('core-site.xml', 'hdfs-site.xml', 'hive-site.xml')

hive.hadoop.conf-path [string]

The specified loading path for the 'core-site.xml', 'hdfs-site.xml', 'hive-site.xml' files

read_partitions [list]

The target partitions that user want to read from hive table, if user does not set this parameter, it will read all the data from hive table.

Tips: Every partition in partitions list should have the same directory depth. For example, a hive table has two partitions: par1 and par2, if user sets it like as the following: read_partitions = [par1=xxx, par1=yyy/par2=zzz], it is illegal

krb5_path [string]

The path of krb5.conf, used to authentication kerberos

kerberos_principal [string]

The principal of kerberos authentication

kerberos_keytab_path [string]

The keytab file path of kerberos authentication

read_columns [list]

The read column list of the data source, user can use it to implement field projection.

compress_codec [string]

The compress codec of files and the details that supported as the following shown:

  • txt: lzo none
  • json: lzo none
  • csv: lzo none
  • orc/parquet:
    automatically recognizes the compression type, no additional settings required.

common options

Source plugin common parameters, please refer to Source Common Options for details

Example

Example 1: Single table


Hive {
table_name = "default.seatunnel_orc"
metastore_uri = "thrift://namenode001:9083"
}

Example 2: Multiple tables


Hive {
tables_configs = [
{
table_name = "default.seatunnel_orc_1"
metastore_uri = "thrift://namenode001:9083"
},
{
table_name = "default.seatunnel_orc_2"
metastore_uri = "thrift://namenode001:9083"
}
]
}

Hive on s3

Step 1

Create the lib dir for hive of emr.

mkdir -p ${SEATUNNEL_HOME}/plugins/Hive/lib

Step 2

Get the jars from maven center to the lib.

cd ${SEATUNNEL_HOME}/plugins/Hive/lib
wget https://repo1.maven.org/maven2/org/apache/hadoop/hadoop-aws/2.6.5/hadoop-aws-2.6.5.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-exec/2.3.9/hive-exec-2.3.9.jar

Step 3

Copy the jars from your environment on emr to the lib dir.

cp /usr/share/aws/emr/emrfs/lib/emrfs-hadoop-assembly-2.60.0.jar ${SEATUNNEL_HOME}/plugins/Hive/lib
cp /usr/share/aws/emr/hadoop-state-pusher/lib/hadoop-common-3.3.6-amzn-1.jar ${SEATUNNEL_HOME}/plugins/Hive/lib
cp /usr/share/aws/emr/hadoop-state-pusher/lib/javax.inject-1.jar ${SEATUNNEL_HOME}/plugins/Hive/lib
cp /usr/share/aws/emr/hadoop-state-pusher/lib/aopalliance-1.0.jar ${SEATUNNEL_HOME}/plugins/Hive/lib

Step 4

Run the case.

env {
parallelism = 1
job.mode = "BATCH"
}

source {
Hive {
table_name = "test_hive.test_hive_sink_on_s3"
metastore_uri = "thrift://ip-192-168-0-202.cn-north-1.compute.internal:9083"
hive.hadoop.conf-path = "/home/ec2-user/hadoop-conf"
hive.hadoop.conf = {
bucket="s3://ws-package"
fs.s3a.aws.credentials.provider="com.amazonaws.auth.InstanceProfileCredentialsProvider"
}
read_columns = ["pk_id", "name", "score"]
}
}

sink {
Hive {
table_name = "test_hive.test_hive_sink_on_s3_sink"
metastore_uri = "thrift://ip-192-168-0-202.cn-north-1.compute.internal:9083"
hive.hadoop.conf-path = "/home/ec2-user/hadoop-conf"
hive.hadoop.conf = {
bucket="s3://ws-package"
fs.s3a.aws.credentials.provider="com.amazonaws.auth.InstanceProfileCredentialsProvider"
}
}
}

Hive on oss

Step 1

Create the lib dir for hive of emr.

mkdir -p ${SEATUNNEL_HOME}/plugins/Hive/lib

Step 2

Get the jars from maven center to the lib.

cd ${SEATUNNEL_HOME}/plugins/Hive/lib
wget https://repo1.maven.org/maven2/org/apache/hive/hive-exec/2.3.9/hive-exec-2.3.9.jar

Step 3

Copy the jars from your environment on emr to the lib dir and delete the conflicting jar.

cp -r /opt/apps/JINDOSDK/jindosdk-current/lib/jindo-*.jar ${SEATUNNEL_HOME}/plugins/Hive/lib
rm -f ${SEATUNNEL_HOME}/lib/hadoop-aliyun-*.jar

Step 4

Run the case.

env {
parallelism = 1
job.mode = "BATCH"
}

source {
Hive {
table_name = "test_hive.test_hive_sink_on_oss"
metastore_uri = "thrift://master-1-1.c-1009b01725b501f2.cn-wulanchabu.emr.aliyuncs.com:9083"
hive.hadoop.conf-path = "/tmp/hadoop"
hive.hadoop.conf = {
bucket="oss://emr-osshdfs.cn-wulanchabu.oss-dls.aliyuncs.com"
}
}
}

sink {
Hive {
table_name = "test_hive.test_hive_sink_on_oss_sink"
metastore_uri = "thrift://master-1-1.c-1009b01725b501f2.cn-wulanchabu.emr.aliyuncs.com:9083"
hive.hadoop.conf-path = "/tmp/hadoop"
hive.hadoop.conf = {
bucket="oss://emr-osshdfs.cn-wulanchabu.oss-dls.aliyuncs.com"
}
}
}

Changelog

2.2.0-beta 2022-09-26

  • Add Hive Source Connector

Next version

  • [Improve] Support kerberos authentication (3840)
  • Support user-defined partitions (3842)