Assert
Assert 数据接收器
描述
Assert 数据接收器是一个用于断言数据是否符合用户定义规则的数据接收器。用户可以通过配置规则来断言数据是否符合预期,如果数据不符合规则,将会抛出异常。
核心特性
配置
Name | Type | Required | Default |
---|---|---|---|
rules | ConfigMap | yes | - |
rules.field_rules | string | yes | - |
rules.field_rules.field_name | string|ConfigMap | yes | - |
rules.field_rules.field_type | string | no | - |
rules.field_rules.field_value | ConfigList | no | - |
rules.field_rules.field_value.rule_type | string | no | - |
rules.field_rules.field_value.rule_value | numeric | no | - |
rules.field_rules.field_value.equals_to | boolean|numeric|string|ConfigList|ConfigMap | no | - |
rules.row_rules | string | yes | - |
rules.row_rules.rule_type | string | no | - |
rules.row_rules.rule_value | string | no | - |
rules.catalog_table_rule | ConfigMap | no | - |
rules.catalog_table_rule.primary_key_rule | ConfigMap | no | - |
rules.catalog_table_rule.primary_key_rule.primary_key_name | string | no | - |
rules.catalog_table_rule.primary_key_rule.primary_key_columns | ConfigList | no | - |
rules.catalog_table_rule.constraint_key_rule | ConfigList | no | - |
rules.catalog_table_rule.constraint_key_rule.constraint_key_name | string | no | - |
rules.catalog_table_rule.constraint_key_rule.constraint_key_type | string | no | - |
rules.catalog_table_rule.constraint_key_rule.constraint_key_columns | ConfigList | no | - |
rules.catalog_table_rule.constraint_key_rule.constraint_key_columns.constraint_key_column_name | string | no | - |
rules.catalog_table_rule.constraint_key_rule.constraint_key_columns.constraint_key_sort_type | string | no | - |
rules.catalog_table_rule.column_rule | ConfigList | no | - |
rules.catalog_table_rule.column_rule.name | string | no | - |
rules.catalog_table_rule.column_rule.type | string | no | - |
rules.catalog_table_rule.column_rule.column_length | int | no | - |
rules.catalog_table_rule.column_rule.nullable | boolean | no | - |
rules.catalog_table_rule.column_rule.default_value | string | no | - |
rules.catalog_table_rule.column_rule.comment | comment | no | - |
rules.table-names | ConfigList | no | - |
rules.tables_configs | ConfigList | no | - |
rules.tables_configs.table_path | String | no | - |
common-options | no | - |
rules [ConfigMap]
规则定义用户可用数据的规则。每个规则代表一个字段验证或行数量验证。
field_rules [ConfigList]
字段规则用于字段验证
field_name [string]
字段名
field_type [string | ConfigMap]
字段类型。字段类型应符合此指南。
field_value [ConfigList]
字段值规则定义数据值验证
rule_type [string]
规则类型。目前支持以下规则
- NOT_NULL
值不能为空
- NULL
值可以为空
- MIN
定义数据的最小值
- MAX
定义数据的最大值
- MIN_LENGTH
定义字符串数据的最小长度
- MAX_LENGTH
定义字符串数据的最大长度
- MIN_ROW
定义最小行数
- MAX_ROW
定义最大行数
rule_value [numeric]
与规则类型相关的值。当rule_type
为MIN
、MAX
、MIN_LENGTH
、MAX_LENGTH
、MIN_ROW
或MAX_ROW
时,用户需要为rule_value
分配一个值。
equals_to [boolean | numeric | string | ConfigList | ConfigMap]
equals_to
用于比较字段值是否等于配置的预期值。用户可以将所有类型的值分配给equals_to
。这些类型在这里有详细说明。
例如,如果一个字段是一个包含三个字段的行,行类型的声明是{a = array<string>, b = map<string, decimal(30, 2)>, c={c_0 = int, b = string}}
,用户可以将值[["a", "b"], { k0 = 9999.99, k1 = 111.11 }, [123, "abcd"]]
分配给equals_to
。
定义字段值的方式与FakeSource一致。
equals_to
不能应用于null
类型字段。但是,用户可以使用规则类型NULL
进行验证,例如{rule_type = NULL}
。
catalog_table_rule [ConfigMap]
catalog_table_rule用于断言Catalog表是否与用户定义的表相同。
table-names [ConfigList]
用于断言表是否在数据中。
tables_configs [ConfigList]
用于断言多个表是否在数据中。
table_path [String]
表的路径。
common options
Sink 插件的通用参数,请参考 Sink Common Options 了解详情
示例
简单
整个Config遵循hocon
风格
Assert {
rules =
{
row_rules = [
{
rule_type = MAX_ROW
rule_value = 10
},
{
rule_type = MIN_ROW
rule_value = 5
}
],
field_rules = [{
field_name = name
field_type = string
field_value = [
{
rule_type = NOT_NULL
},
{
rule_type = MIN_LENGTH
rule_value = 5
},
{
rule_type = MAX_LENGTH
rule_value = 10
}
]
}, {
field_name = age
field_type = int
field_value = [
{
rule_type = NOT_NULL
equals_to = 23
},
{
rule_type = MIN
rule_value = 32767
},
{
rule_type = MAX
rule_value = 2147483647
}
]
}
]
catalog_table_rule {
primary_key_rule = {
primary_key_name = "primary key"
primary_key_columns = ["id"]
}
constraint_key_rule = [
{
constraint_key_name = "unique_name"
constraint_key_type = UNIQUE_KEY
constraint_key_columns = [
{
constraint_key_column_name = "id"
constraint_key_sort_type = ASC
}
]
}
]
column_rule = [
{
name = "id"
type = bigint
},
{
name = "name"
type = string
},
{
name = "age"
type = int
}
]
}
}
}
复杂
这里有一个更复杂的例子,涉及到equals_to
。
source {
FakeSource {
row.num = 1
schema = {
fields {
c_null = "null"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_date = date
c_timestamp = timestamp
c_time = time
c_bytes = bytes
c_array = "array<int>"
c_map = "map<time, string>"
c_map_nest = "map<string, {c_int = int, c_string = string}>"
c_row = {
c_null = "null"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_date = date
c_timestamp = timestamp
c_time = time
c_bytes = bytes
c_array = "array<int>"
c_map = "map<string, string>"
}
}
}
rows = [
{
kind = INSERT
fields = [
null, "AAA", false, 1, 1, 333, 323232, 3.1, 9.33333, 99999.99999999, "2012-12-21", "2012-12-21T12:34:56", "12:34:56",
"bWlJWmo=",
[0, 1, 2],
"{ 12:01:26 = v0 }",
{ k1 = [123, "BBB-BB"]},
[
null, "AAA", false, 1, 1, 333, 323232, 3.1, 9.33333, 99999.99999999, "2012-12-21", "2012-12-21T12:34:56", "12:34:56",
"bWlJWmo=",
[0, 1, 2],
{ k0 = v0 }
]
]
}
]
plugin_output = "fake"
}
}
sink{
Assert {
plugin_input = "fake"
rules =
{
row_rules = [
{
rule_type = MAX_ROW
rule_value = 1
},
{
rule_type = MIN_ROW
rule_value = 1
}
],
field_rules = [
{
field_name = c_null
field_type = "null"
field_value = [
{
rule_type = NULL
}
]
},
{
field_name = c_string
field_type = string
field_value = [
{
rule_type = NOT_NULL
equals_to = "AAA"
}
]
},
{
field_name = c_boolean
field_type = boolean
field_value = [
{
rule_type = NOT_NULL
equals_to = false
}
]
},
{
field_name = c_tinyint
field_type = tinyint
field_value = [
{
rule_type = NOT_NULL
equals_to = 1
}
]
},
{
field_name = c_smallint
field_type = smallint
field_value = [
{
rule_type = NOT_NULL
equals_to = 1
}
]
},
{
field_name = c_int
field_type = int
field_value = [
{
rule_type = NOT_NULL
equals_to = 333
}
]
},
{
field_name = c_bigint
field_type = bigint
field_value = [
{
rule_type = NOT_NULL
equals_to = 323232
}
]
},
{
field_name = c_float
field_type = float
field_value = [
{
rule_type = NOT_NULL
equals_to = 3.1
}
]
},
{
field_name = c_double
field_type = double
field_value = [
{
rule_type = NOT_NULL
equals_to = 9.33333
}
]
},
{
field_name = c_decimal
field_type = "decimal(30, 8)"
field_value = [
{
rule_type = NOT_NULL
equals_to = 99999.99999999
}
]
},
{
field_name = c_date
field_type = date
field_value = [
{
rule_type = NOT_NULL
equals_to = "2012-12-21"
}
]
},
{
field_name = c_timestamp
field_type = timestamp
field_value = [
{
rule_type = NOT_NULL
equals_to = "2012-12-21T12:34:56"
}
]
},
{
field_name = c_time
field_type = time
field_value = [
{
rule_type = NOT_NULL
equals_to = "12:34:56"
}
]
},
{
field_name = c_bytes
field_type = bytes
field_value = [
{
rule_type = NOT_NULL
equals_to = "bWlJWmo="
}
]
},
{
field_name = c_array
field_type = "array<int>"
field_value = [
{
rule_type = NOT_NULL
equals_to = [0, 1, 2]
}
]
},
{
field_name = c_map
field_type = "map<time, string>"
field_value = [
{
rule_type = NOT_NULL
equals_to = "{ 12:01:26 = v0 }"
}
]
},
{
field_name = c_map_nest
field_type = "map<string, {c_int = int, c_string = string}>"
field_value = [
{
rule_type = NOT_NULL
equals_to = { k1 = [123, "BBB-BB"] }
}
]
},
{
field_name = c_row
field_type = {
c_null = "null"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_date = date
c_timestamp = timestamp
c_time = time
c_bytes = bytes
c_array = "array<int>"
c_map = "map<string, string>"
}
field_value = [
{
rule_type = NOT_NULL
equals_to = [
null, "AAA", false, 1, 1, 333, 323232, 3.1, 9.33333, 99999.99999999, "2012-12-21", "2012-12-21T12:34:56", "12:34:56",
"bWlJWmo=",
[0, 1, 2],
{ k0 = v0 }
]
}
]
}
]
}
}
}
验证多表
验证多个表
env {
parallelism = 1
job.mode = BATCH
}
source {
FakeSource {
tables_configs = [
{
row.num = 16
schema {
table = "test.table1"
fields {
c_int = int
c_bigint = bigint
}
}
},
{
row.num = 17
schema {
table = "test.table2"
fields {
c_string = string
c_tinyint = tinyint
}
}
}
]
}
}
transform {
}
sink {
Assert {
rules =
{
tables_configs = [
{
table_path = "test.table1"
row_rules = [
{
rule_type = MAX_ROW
rule_value = 16
},
{
rule_type = MIN_ROW
rule_value = 16
}
],
field_rules = [{
field_name = c_int
field_type = int
field_value = [
{
rule_type = NOT_NULL
}
]
}, {
field_name = c_bigint
field_type = bigint
field_value = [
{
rule_type = NOT_NULL
}
]
}]
},
{
table_path = "test.table2"
row_rules = [
{
rule_type = MAX_ROW
rule_value = 17
},
{
rule_type = MIN_ROW
rule_value = 17
}
],
field_rules = [{
field_name = c_string
field_type = string
field_value = [
{
rule_type = NOT_NULL
}
]
}, {
field_name = c_tinyint
field_type = tinyint
field_value = [
{
rule_type = NOT_NULL
}
]
}]
}
]
}
}
}